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SU(2) / U(1) Dynamical System 
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The SU(2)/U(1) dynamical system is defined and its dynamics are studied. It  is 
shown to be chaotic in a certain range of parameters. Links corresponding to 
the cycles of SU(2)/U(1) are studied. 

1. INTRODUCTION 

Dynamical systems play important roles in theoretical as well as 
experimental science (Cvitanovic, 1989). Recently (Okninski, 1992) a group- 
theoretic approach to generate dynamical systems has been discovered and 
used to study the Euclidean group in two-dimensions E(2). Here we use this 
approach to derive and study the SU(2) /U(1)  dynamical system [SU(2)/ 
U(I) DS]. This system has been proposed (Okninski, 1988) to study 
scattering problems. 

In Section 2 the system is derived and its fixed point and stability are 
studied. It is shown to be chaotic for a certain range of its parameter. In 
Section 3 links corresponding to SU(2) /U(1)  DS are defined and some of 
its properties are studied. 

2. THE MODEL 

The Shimizu-Leutbecher sequence {Gn} (Shimizu, 1963; Leutbecher, 
1967) is defined by 

G n + I = G ~ H G ~  1, n = 1 , 2 , 3  . . . .  (1) 

where Go = G is a Lie group and H is a subgroup of G. Choosing G to be 
SU(2) and H = U(1), we get 

G~ = exp[i(z/2)6 " ton], H = exp[i(x/2)a3] (2) 
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where o = (a~, 0-2, 0"3) are  the Pauli matrices and to, = (x.,  y , ,  z,) is a unit 
vector, i.e., 

2 2 1 ( 3 )  x , + y 2 + z , =  

Using (1) and (2), we get the S U ( 2 ) / U ( 1 )  DS 

Xn +l = 2bx, ,z , ,  - -  [b(1 - b)] i / %  (4a) 

y ,  + ~ = 2bynz, ,  - [b( 1 - b)] '/2x~ (4b) 

z ,  +7 = 2bz2  + (1 - 2b) (4e) 

where b = sin2(~(/2), i.e., 0 < b < 1. In deriving the system (4) the following 
relations of  Pauli matrices are useful: 

It is easy 
(Devany, 1989) 

trttrj - ajar = 2ineOkak (5a) 

a l a j  + ajar = 26jll (5b) 

exp(i0to, �9 o) = cos 0 + ito, �9 o sin 0 (5c) 

to see that (4.3) is equivalent to the logistic equation 

U,+l = 4bu,(1 - u , ) ,  u, =(1/2)(1 - z , )  (6) 

However, it is important to realize that although (4.3) is independent of  x ,  
and y, ,  the inclusion of  (4.1) and (4.2) constrains the system. For  example, 
although (4.3) has two fixed points, the S U ( 2 ) / U ( 1 )  DS has a unique fixed 
point, namely (0,0,  1), i.e., x,  = 0 ,  y ,  = 0 ,  and z, = 1, for all n = 
1 ,2 ,3  . . . . .  

Stabifity analysis implies that the system is stable for b < 0.25. Numer- 
ical studies show that for 0.25 < b < 0.5 the x - y  subsystem is chaotic, 
while z is stable. The value b = 0.5 is a special point for the system and 
corresponds to z = 0 and a 4-cycle in the x - y  subsystem. For  0.5 < b < 1 
there is chaos in the x - y  subsystem, while z is stable for 0.5 < b < 0.75. 
For  0.75 < b < 0.87 a 2-cycle forms, for 0.87 < b < 0.89 a 4-cycle exists, for 
0.89 < b < 0.9 it becomes an 8-cycle, and for 0.9 < b < 1 there is chaos. The 
trajectories are shown in Figs. 1-4. 

Substituting b = 1 in system (4), we get 

hence 

Xn + l Xn 

Y~ + I Y~ 

x~ = ay~ (7) 
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b = 0.25 

F ig .  1. 

b = 0 . 3 5  

Trajectories wi th  b = 0.25 a n d  b = 0.35. 

1683 

b = 0.75 

Fig. 2. 

b = 0.8 

Trajectories with b = 0.75 a n d  b = 0.8. 

b = 0.88 

F ig .  3. 

b = 0.89 

Trajectories with  b = 0.88 a n d  b = 0.89. 

where a is a constant. The intersection of  the sphere (7) with the sphere (3) 
is a circle. This explains the results in Fig. 4. 

The value b = 0.5 is a special point for the system (4) and represents 
a discontinuity o f  its dynamical behavior in the parameter space since the 
system is chaotic for 0.25 < b < 0.5 and for 0.5 < b < 1. Setting b = 0.5 in 
(4.3), we get zn = 0 ,  x n + t =  -Yn, and yn+l = xn, which implies x ~ + 4 =  xn, 
Y~ + 4 = Y~, i.e., a 4-cycle. This explains the numerical results. 

The sufficient condition that a dynamical system is chaotic is that it 
has a positive Lyapunov exponent (Wolf  et aL, 1985). Since (4.3) is 
independent of  xn, y~, one of  the three Lyapunov exponents o f  the system 
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b -- '0.92 

Fig. 4. 

b = : t .0  

Trajectories with b = 0.92 and b = 1.0. 

(4) is equal to that of (4.3), which is known to be positive for b > 0.9. 
Therefore we have the following proposition: 

Proposition 1. The system (4) is chaotic for b > 0.9. 

3. THE SU(2)/U(1) LINKS 

The trajectories of the chaotic dynamical system are a rich source for 
knots and links. Two examples are Lorenz (Birman and Williams, 1983) and 
Rossler (Ahmed and E1-Rifai, 1992) knots. Here we define links correspond- 
ing to the cycles in the z-subsystem of the SU(2)/U(1) DS. A standard 
problem in using trajectories obtained by numerical solutions to define knots 
and links is that in general these solutions are not very accurate in detecting 
closed paths. Here we do not have this problem since we know that the 
trajectories lie on a sphere (3). Also, the z coordinate is fixed in the cycles 
and hence the trajectories lie in a closed circle. In Fig. 5 we show the links 
corresponding to the 2-cycle and a 4-cycle in the z system. 

We define the links by taking one of the crossings to be an up and the 
next one to be a down and so on. Changing the initial crossing will reduce 
the links. Since we consider only 2n-cycles n = 1, 2, 3 , . . . ,  the alternating 
up-down construction is consistent. We call the resulting links SU(2)/U(1) 
links. Sarkovski's theorem (Devany, 1989) guarantees that the cycles, hence 
links, exist for all n = 1, 2, 3 , . . . .  Our construction implies the following 
proposition. 

Proposition 2. 
2.1. All SU(2)/U(1) links are not knots. 
2.2. The SU(2)/U(1) links corresponding to the 2n-cycles with n = 1, 2 

are represented by elements of the braid group B2, B 6 and are the closure 
of the following braids, respectively: 
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n t=  1 

Fig. 5. 

n ~ 2  

SU(2)/U(1) l inks  for n = 1 and  2, respectively.  
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aT n =  1 

(0 .10 .30.5)(0 .210.410.5)(0 .50 .210"41)(O"10.30.5)  n = 2 (8) 

2.3. The sets of the SU(2)/U(1) links and Rossler knots are disjoint. 

Proof 
2.1. The links consist of different closed curves, while knots contain a 

unique closed curve. 
2.2. By construction. 
2.3. Rossler knots are not links and using part 2.1 of this proposition, 

then they are disjoint. 

Conjectures. 1. For n > 1 the SU(2)/U(I) links are the closure of  the 
following braids: 

(0.10.3 " "" 0 . k - 1 ) ( a ~ - 1 0 . ~  -1 �9 �9 " ~/,--~ 2 0 . ~ -  1 ) ( 0 . ~ -  10./~-- ! 20.k-4-1 . .  . 0 . 4 1 0 . ~ - 1 )  
( 9 )  

(O"10"3" " " Ok--  1), k = 2 n -  1(2" --  1) 

2. For n > 1 the SU(2)/U(1) links and Lorenz links are disjoint. 

Finally, the rapid increase in the rank of the braid group corresponding 
to SU(2)/U(1) links as n increases (B2 for n = 1, B6 for n = 2, B28 for n = 3, 
etc.) forces the need to use computer-aided methods to study the invariants 
of these links e.g., Jones polynomials (Jones, 1987). An effective program 
using Mathematica (Wolfram, 1990) has been designed by EI-Misiery (1993). 
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